Proof of a Riddle Written by: Shlomi Fish

1 The Problem

We need to prove that for every natural number $n>0$, there exists a decimal number of n digits, which can be wholly divided by 5^{n}, and all of its digits are odd.

2 Methodology

We will prove a stronger claim. We will demonstrate that if b_{n} is the corresponding number for n, then it can serve as a suffix for b_{n+1}, by adding another most significant digit.

More formally:

1. $b_{1}=5$.
2. For every n, there exists an $a \in\{1,3,5,7,9\}$ so that $b_{n+1}=b_{n}+a \cdot 10^{n}$ and $b_{n+1} \bmod 5^{n+1}=0$.

3 Proof

The proof would be by induction.

3.1 Induction Base

It holds for $n=1$ as 5 is a one-digit number that is wholly divisable by 5^{1}.

3.2 Induction Step

Let's assume it holds for n and show that it also holds for $n+1$.
Now:

$$
b_{n+1}=b_{n}+a \cdot 10^{n}
$$

According to the induction step b_{n} is wholly divisable by 5^{n} and so is $10^{n}=5^{n} \cdot 2^{n}$. So we can divide the expression by 5^{n} and try to find an a so that the quotient is divisable by 5 . We get:

$$
b_{n}^{\prime}+a \cdot 2^{n}
$$

b_{n}^{\prime} has some modulo 5 , and 2^{n} has a non-zero modulo. The values that a can assume $(1,3,5,7,9)$ contain all the modulos of 5 . Since 5 is prime, and its modulos are a group, we can get all modulos by multiplying a given non-zero modulo by the other modulos. So we can choose an a so that the expression modulo 5 evaluates to 0 . Thus we can divide this b_{n+1} by 5^{n+1} as well.
Q.E.D.

